Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 17: 1296455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107409

RESUMO

Introduction: Modification of the extracellular matrix (ECM) is one of the major processes in the pathology of brain damage following an ischemic stroke. However, our understanding of how age-related ECM alterations may affect stroke pathophysiology and its outcome is still very limited. Methods: We conducted an ECM-targeted re-analysis of our previously obtained RNA-Seq dataset of aging, ischemic stroke and their interactions in young adult (3-month-old) and aged (18-month-old) mice. The permanent middle cerebral artery occlusion (pMCAo) in rodents was used as a model of ischemic stroke. Altogether 56 genes of interest were chosen for this study. Results: We identified an increased activation of the genes encoding proteins related to ECM degradation, such as matrix metalloproteinases (MMPs), proteases of a disintegrin and metalloproteinase with the thrombospondin motifs (ADAMTS) family and molecules that regulate their activity, tissue inhibitors of metalloproteinases (TIMPs). Moreover, significant upregulation was also detected in the mRNA of other ECM molecules, such as proteoglycans, syndecans and link proteins. Notably, we identified 8 genes where this upregulation was enhanced in aged mice in comparison with the young ones. Ischemia evoked a significant downregulation in only 6 of our genes of interest, including those encoding proteins associated with the protective function of ECM molecules (e.g., brevican, Hapln4, Sparcl1); downregulation in brevican was more prominent in aged mice. The study was expanded by proteome analysis, where we observed an ischemia-induced overexpression in three proteins, which are associated with neuroinflammation (fibronectin and vitronectin) and neurodegeneration (link protein Hapln2). In fibronectin and Hapln2, this overexpression was more pronounced in aged post-ischemic animals. Conclusion: Based on these results, we can conclude that the ratio between the protecting and degrading mechanisms in the aged brain is shifted toward degradation and contributes to the aged tissues' increased sensitivity to ischemic insults. Altogether, our data provide fresh perspectives on the processes underlying ischemic injury in the aging brain and serve as a freely accessible resource for upcoming research.

2.
Nat Commun ; 14(1): 5554, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689751

RESUMO

NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic ß cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.


Assuntos
Células Endócrinas , Células Secretoras de Insulina , Diferenciação Celular/genética , Fatores de Transcrição , Ativação Transcricional
3.
Front Cell Neurosci ; 17: 1173200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153637

RESUMO

Reactive astrogliosis is a reaction of astrocytes to disturbed homeostasis in the central nervous system (CNS), accompanied by changes in astrocyte numbers, morphology, and function. Reactive astrocytes are important in the onset and progression of many neuropathologies, such as neurotrauma, stroke, and neurodegenerative diseases. Single-cell transcriptomics has revealed remarkable heterogeneity of reactive astrocytes, indicating their multifaceted functions in a whole spectrum of neuropathologies, with important temporal and spatial resolution, both in the brain and in the spinal cord. Interestingly, transcriptomic signatures of reactive astrocytes partially overlap between neurological diseases, suggesting shared and unique gene expression patterns in response to individual neuropathologies. In the era of single-cell transcriptomics, the number of new datasets steeply increases, and they often benefit from comparisons and integration with previously published work. Here, we provide an overview of reactive astrocyte populations defined by single-cell or single-nucleus transcriptomics across multiple neuropathologies, attempting to facilitate the search for relevant reference points and to improve the interpretability of new datasets containing cells with signatures of reactive astrocytes.

4.
Front Cell Neurosci ; 17: 1212975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256151

RESUMO

[This corrects the article DOI: 10.3389/fncel.2023.1173200.].

5.
Sci Rep ; 13(1): 6538, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085528

RESUMO

The role of glia in amyotrophic lateral sclerosis (ALS) is undeniable. Their disease-related activity has been extensively studied in the spinal cord, but only partly in the brain. We present herein a comprehensive study of glia in the cortex of SOD1(G93A) mice-a widely used model of ALS. Using single-cell RNA sequencing (scRNA-seq) and immunohistochemistry, we inspected astrocytes, microglia, and oligodendrocytes, in four stages of the disease, respecting the factor of sex. We report minimal changes of glia throughout the disease progression and regardless of sex. Pseudobulk and single-cell analyses revealed subtle disease-related transcriptional alterations at the end-stage in microglia and oligodendrocytes, which were supported by immunohistochemistry. Therefore, our data support the hypothesis that the SOD1(G93A) mouse cortex does not recapitulate the disease in patients, and we recommend the use of a different model for future studies of the cortical ALS pathology.


Assuntos
Esclerose Amiotrófica Lateral , Neuroglia , Superóxido Dismutase-1 , Animais , Camundongos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Modelos Animais de Doenças , Camundongos Transgênicos , Neurônios Motores/patologia , Neuroglia/patologia , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
6.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36995772

RESUMO

Despite advances in acute care, ischemic stroke remains a major cause of long-term disability. Approaches targeting both neuronal and glial responses are needed to enhance recovery and improve long-term outcome. The complement C3a receptor (C3aR) is a regulator of inflammation with roles in neurodevelopment, neural plasticity, and neurodegeneration. Using mice lacking C3aR (C3aR-/-) and mice overexpressing C3a in the brain, we uncovered 2 opposing effects of C3aR signaling on functional recovery after ischemic stroke: inhibition in the acute phase and facilitation in the later phase. Peri-infarct astrocyte reactivity was increased and density of microglia reduced in C3aR-/- mice; C3a overexpression led to the opposite effects. Pharmacological treatment of wild-type mice with intranasal C3a starting 7 days after stroke accelerated recovery of motor function and attenuated astrocyte reactivity without enhancing microgliosis. C3a treatment stimulated global white matter reorganization, increased peri-infarct structural connectivity, and upregulated Igf1 and Thbs4 in the peri-infarct cortex. Thus, C3a treatment from day 7 after stroke exerts positive effects on astrocytes and neuronal connectivity while avoiding the deleterious consequences of C3aR signaling during the acute phase. Intranasal administration of C3aR agonists within a convenient time window holds translational promise to improve outcome after ischemic stroke.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Complemento C3a/genética , Astrócitos , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/genética , Infarto
7.
J Cell Mol Med ; 27(7): 927-938, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36860157

RESUMO

The ß-lactoglobulin (ß-LG) was previously characterized as a mild antioxidant modulating cell viability. However, its biological action regarding endometrial stromal cell cytophysiology and function has never been considered. In this study, we investigated the influence of ß-LG on the cellular status of equine endometrial progenitor cells under oxidative stress. The study showed that ß-LG decreased the intracellular accumulation of reactive oxygen species, simultaneously ameliorating cell viability and exerting an anti-apoptotic effect. However, at the transcriptional level, the reduced mRNA expression of pro-apoptotic factors (i.e. BAX and BAD) was accompanied by decreased expression of mRNA for anti-apoptotic BCL-2 and genes coding antioxidant enzymes (CAT, SOD-1, GPx). Still, we have also noted the positive effect of ß-LG on the expression profile of transcripts involved in endometrial viability and receptivity, including ITGB1, ENPP3, TUNAR and miR-19b-3p. Finally, the expression of master factors of endometrial decidualization, namely prolactin and IGFBP1, was increased in response to ß-LG, while non-coding RNAs (ncRNAs), that is lncRNA MALAT1 and miR-200b-3p, were upregulated. Our findings indicate a novel potential role of ß-LG as a molecule regulating endometrial tissue functionality, promoting viability and normalizing the oxidative status of endometrial progenitor cells. The possible mechanism of ß-LG action includes the activation of ncRNAs essential for tissue regeneration, such as lncRNA MALAT-1/TUNAR and miR-19b-3p/miR-200b-3p.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Cavalos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Lactoglobulinas , Antioxidantes , Células-Tronco/metabolismo
8.
Cell Biosci ; 13(1): 53, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36899442

RESUMO

BACKGROUND: Glucose homeostasis is dependent on functional pancreatic α and ß cells. The mechanisms underlying the generation and maturation of these endocrine cells remain unclear. RESULTS: We unravel the molecular mode of action of ISL1 in controlling α cell fate and the formation of functional ß cells in the pancreas. By combining transgenic mouse models, transcriptomic and epigenomic profiling, we uncover that elimination of Isl1 results in a diabetic phenotype with a complete loss of α cells, disrupted pancreatic islet architecture, downregulation of key ß-cell regulators and maturation markers of ß cells, and an enrichment in an intermediate endocrine progenitor transcriptomic profile. CONCLUSIONS: Mechanistically, apart from the altered transcriptome of pancreatic endocrine cells, Isl1 elimination results in altered silencing H3K27me3 histone modifications in the promoter regions of genes that are essential for endocrine cell differentiation. Our results thus show that ISL1 transcriptionally and epigenetically controls α cell fate competence, and ß cell maturation, suggesting that ISL1 is a critical component for generating functional α and ß cells.

9.
Mol Oncol ; 17(4): 647-663, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744875

RESUMO

It is currently challenging to adequately model the growth and migration of glioblastoma using two-dimensional (2D) in vitro culture systems as they quickly lose the original, patient-specific identity and heterogeneity. However, with the advent of three-dimensional (3D) cell cultures and human-induced pluripotent stem cell (iPSC)-derived cerebral organoids (COs), studies demonstrate that the glioblastoma-CO (GLICO) coculture model helps to preserve the phenotype of the patient-specific tissue. Here, we aimed to set up such a model using mature COs and develop a pipeline for subsequent analysis of cocultured glioblastoma. Our data demonstrate that the growth and migration of the glioblastoma cell line within the mature COs are significantly increased in the presence of extracellular matrix proteins, shortening the time needed for glioblastoma to initiate migration. We also describe in detail the method for the visualization and quantification of these migrating cells within the GLICO model. Lastly, we show that this coculture model (and the human brain-like microenvironment) can significantly transform the gene expression profile of the established U87 glioblastoma cell line into proneural and classical glioblastoma cell types.


Assuntos
Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Organoides/metabolismo , Encéfalo , Linhagem Celular , Técnicas de Cultura de Células/métodos , Microambiente Tumoral
10.
Front Cell Neurosci ; 16: 1025012, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313617

RESUMO

Oligodendrocytes (OL) have been for decades considered a passive, homogenous population of cells that provide support to neurons, and show a limited response to pathological stimuli. This view has been dramatically changed by the introduction of powerful transcriptomic methods that have uncovered a broad spectrum of OL populations that co-exist within the healthy central nervous system (CNS) and also across a variety of diseases. Specifically, single-cell and single-nucleus RNA-sequencing (scRNA-seq, snRNA-seq) have been used to reveal OL variations in maturation, myelination and immune status. The newly discovered immunomodulatory role suggests that OL may serve as targets for future therapies. In this review, we summarize the current understanding of OL heterogeneity in mammalian CNS as revealed by scRNA-seq and snRNA-seq. We provide a list of key studies that identify consensus marker genes defining the currently known OL populations. This resource can be used to standardize analysis of OL related datasets and improve their interpretation, ultimately leading to a better understanding of OL functions in health and disease.

11.
Proc Natl Acad Sci U S A ; 119(37): e2207433119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36074819

RESUMO

A cardinal feature of the auditory pathway is frequency selectivity, represented in a tonotopic map from the cochlea to the cortex. The molecular determinants of the auditory frequency map are unknown. Here, we discovered that the transcription factor ISL1 regulates the molecular and cellular features of auditory neurons, including the formation of the spiral ganglion and peripheral and central processes that shape the tonotopic representation of the auditory map. We selectively knocked out Isl1 in auditory neurons using Neurod1Cre strategies. In the absence of Isl1, spiral ganglion neurons migrate into the central cochlea and beyond, and the cochlear wiring is profoundly reduced and disrupted. The central axons of Isl1 mutants lose their topographic projections and segregation at the cochlear nucleus. Transcriptome analysis of spiral ganglion neurons shows that Isl1 regulates neurogenesis, axonogenesis, migration, neurotransmission-related machinery, and synaptic communication patterns. We show that peripheral disorganization in the cochlea affects the physiological properties of hearing in the midbrain and auditory behavior. Surprisingly, auditory processing features are preserved despite the significant hearing impairment, revealing central auditory pathway resilience and plasticity in Isl1 mutant mice. Mutant mice have a reduced acoustic startle reflex, altered prepulse inhibition, and characteristics of compensatory neural hyperactivity centrally. Our findings show that ISL1 is one of the obligatory factors required to sculpt auditory structural and functional tonotopic maps. Still, upon Isl1 deletion, the ensuing central plasticity of the auditory pathway does not suffice to overcome developmentally induced peripheral dysfunction of the cochlea.


Assuntos
Vias Auditivas , Núcleo Coclear , Células Ciliadas Auditivas , Proteínas com Homeodomínio LIM , Neurogênese , Gânglio Espiral da Cóclea , Fatores de Transcrição , Animais , Vias Auditivas/embriologia , Cóclea/embriologia , Cóclea/inervação , Núcleo Coclear/embriologia , Células Ciliadas Auditivas/fisiologia , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/fisiologia , Camundongos , Neurogênese/genética , Gânglio Espiral da Cóclea/enzimologia , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia
12.
Cells ; 11(9)2022 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-35563743

RESUMO

The study aimed to investigate the influence of obesity on cellular features of equine endometrial progenitor cells (Eca EPCs), including viability, proliferation capacity, mitochondrial metabolism, and oxidative homeostasis. Eca EPCs derived from non-obese (non-OB) and obese (OB) mares were characterized by cellular phenotype and multipotency. Obesity-induced changes in the activity of Eca EPCs include the decline of their proliferative activity, clonogenic potential, mitochondrial metabolism, and enhanced oxidative stress. Eca EPCs isolated from obese mares were characterized by an increased occurrence of early apoptosis, loss of mitochondrial dynamics, and senescence-associated phenotype. Attenuated metabolism of Eca EPCs OB was related to increased expression of pro-apoptotic markers (CASP9, BAX, P53, P21), enhanced expression of OPN, PI3K, and AKT, simultaneously with decreased signaling stabilizing cellular homeostasis (including mitofusin, SIRT1, FOXP3). Obesity alters functional features and the self-renewal potential of endometrial progenitor cells. The impaired cytophysiology of progenitor cells from obese endometrium predicts lower regenerative capacity if used as autologous transplants.


Assuntos
Células Progenitoras Endoteliais , Animais , Endométrio/metabolismo , Células Progenitoras Endoteliais/metabolismo , Feminino , Cavalos , Obesidade/metabolismo , Fenótipo , Células-Tronco/metabolismo
13.
J Mol Diagn ; 24(4): 386-394, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35081459

RESUMO

Small RNA-sequencing (RNA-Seq) is being increasingly used for profiling of circulating microRNAs (miRNAs), a new group of promising biomarkers. Unfortunately, small RNA-Seq protocols are prone to biases limiting quantification accuracy, which motivated development of several novel methods. Here, we present comparison of all small RNA-Seq library preparation approaches that are commercially available for quantification of miRNAs in biofluids. Using synthetic and human plasma samples, we compared performance of traditional two-adaptor ligation protocols (Lexogen, Norgen), as well as methods using randomized adaptors (NEXTflex), polyadenylation (SMARTer), circularization (RealSeq), capture probes (EdgeSeq), or unique molecular identifiers (QIAseq). There was no single protocol outperforming others across all metrics. Limited overlap of measured miRNA profiles was documented between methods largely owing to protocol-specific biases. Methods designed to minimize bias largely differ in their performance, and contributing factors were identified. Usage of unique molecular identifiers has rather negligible effect and, if designed incorrectly, can even introduce spurious results. Together, these results identify strengths and weaknesses of all current methods and provide guidelines for applications of small RNA-Seq in biomarker research.


Assuntos
MicroRNA Circulante , MicroRNAs , Benchmarking , MicroRNA Circulante/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , MicroRNAs/genética , Análise de Sequência de RNA/métodos
14.
Cells ; 10(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34685587

RESUMO

Reverse transcription quantitative PCR (RT-qPCR) has delivered significant insights in understanding the gene expression landscape. Thanks to its precision, sensitivity, flexibility, and cost effectiveness, RT-qPCR has also found utility in advanced single-cell analysis. Single-cell RT-qPCR now represents a well-established method, suitable for an efficient screening prior to single-cell RNA sequencing (scRNA-Seq) experiments, or, oppositely, for validation of hypotheses formulated from high-throughput approaches. Here, we aim to provide a comprehensive summary of the scRT-qPCR method by discussing the limitations of single-cell collection methods, describing the importance of reverse transcription, providing recommendations for the preamplification and primer design, and summarizing essential data processing steps. With the detailed protocol attached in the appendix, this tutorial provides a set of guidelines that allow any researcher to perform scRT-qPCR measurements of the highest standard.


Assuntos
Perfilação da Expressão Gênica/normas , Reação em Cadeia da Polimerase em Tempo Real/normas , Transcrição Reversa/genética , Análise de Célula Única/normas , Perfilação da Expressão Gênica/métodos , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Análise de Célula Única/métodos
15.
Glia ; 69(11): 2658-2681, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314531

RESUMO

NG2 glia display wide proliferation and differentiation potential under physiological and pathological conditions. Here, we examined these two features following different types of brain disorders such as focal cerebral ischemia (FCI), cortical stab wound (SW), and demyelination (DEMY) in 3-month-old mice, in which NG2 glia are labeled by tdTomato under the Cspg4 promoter. To compare NG2 glia expression profiles following different CNS injuries, we employed single-cell RT-qPCR and self-organizing Kohonen map analysis of tdTomato-positive cells isolated from the uninjured cortex/corpus callosum and those after specific injury. Such approach enabled us to distinguish two main cell populations (NG2 glia, oligodendrocytes), each of them comprising four distinct subpopulations. The gene expression profiling revealed that a subpopulation of NG2 glia expressing GFAP, a marker of reactive astrocytes, is only present transiently after FCI. However, following less severe injuries, namely the SW and DEMY, subpopulations mirroring different stages of oligodendrocyte maturation markedly prevail. Such injury-dependent incidence of distinct subpopulations was also confirmed by immunohistochemistry. To characterize this unique subpopulation of transient astrocyte-like NG2 glia, we used single-cell RNA-sequencing analysis and to disclose their basic membrane properties, the patch-clamp technique was employed. Overall, we have proved that astrocyte-like NG2 glia are a specific subpopulation of NG2 glia emerging transiently only following FCI. These cells, located in the postischemic glial scar, are active in the cell cycle and display a current pattern similar to that identified in cortical astrocytes. Astrocyte-like NG2 glia may represent important players in glial scar formation and repair processes, following ischemia.


Assuntos
Astrócitos , Isquemia Encefálica , Animais , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Gliose/patologia , Camundongos , Neuroglia/metabolismo , Oligodendroglia/patologia
16.
Diagnostics (Basel) ; 11(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071824

RESUMO

MicroRNAs (miRNAs) are a class of small RNA molecules that have an important regulatory role in multiple physiological and pathological processes. Their disease-specific profiles and presence in biofluids are properties that enable miRNAs to be employed as non-invasive biomarkers. In the past decades, several methods have been developed for miRNA analysis, including small RNA sequencing (RNA-seq). Small RNA-seq enables genome-wide profiling and analysis of known, as well as novel, miRNA variants. Moreover, its high sensitivity allows for profiling of low input samples such as liquid biopsies, which have now found applications in diagnostics and prognostics. Still, due to technical bias and the limited ability to capture the true miRNA representation, its potential remains unfulfilled. The introduction of many new small RNA-seq approaches that tried to minimize this bias, has led to the existence of the many small RNA-seq protocols seen today. Here, we review all current approaches to cDNA library construction used during the small RNA-seq workflow, with particular focus on their implementation in commercially available protocols. We provide an overview of each protocol and discuss their applicability. We also review recent benchmarking studies comparing each protocol's performance and summarize the major conclusions that can be gathered from their usage. The result documents variable performance of the protocols and highlights their different applications in miRNA research. Taken together, our review provides a comprehensive overview of all the current small RNA-seq approaches, summarizes their strengths and weaknesses, and provides guidelines for their applications in miRNA research.

17.
Front Aging Neurosci ; 13: 783120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35153718

RESUMO

In this study, we aimed to disclose the impact of amyloid-ß toxicity and tau pathology on astrocyte swelling, their volume recovery and extracellular space (ECS) diffusion parameters, namely volume fraction (α) and tortuosity (λ), in a triple transgenic mouse model of Alzheimer's disease (3xTg-AD). Astrocyte volume changes, which reflect astrocyte ability to take up ions/neurotransmitters, were quantified during and after exposure to hypo-osmotic stress, or hyperkalemia in acute hippocampal slices, and were correlated with alterations in ECS diffusion parameters. Astrocyte volume and ECS diffusion parameters were monitored during physiological aging (controls) and during AD progression in 3-, 9-, 12- and 18-month-old mice. In the hippocampus of controls α gradually declined with age, while it remained unaffected in 3xTg-AD mice during the entire time course. Moreover, age-related increases in λ occurred much earlier in 3xTg-AD animals than in controls. In 3xTg-AD mice changes in α induced by hypo-osmotic stress or hyperkalemia were comparable to those observed in controls, however, AD progression affected α recovery following exposure to both. Compared to controls, a smaller astrocyte swelling was detected in 3xTg-AD mice only during hyperkalemia. Since we observed a large variance in astrocyte swelling/volume regulation, we divided them into high- (HRA) and low-responding astrocytes (LRA). In response to hyperkalemia, the incidence of LRA was higher in 3xTg-AD mice than in controls, which may also reflect compromised K+ and neurotransmitter uptake. Furthermore, we performed single-cell RT-qPCR to identify possible age-related alterations in astrocytic gene expression profiles. Already in 3-month-old 3xTg-AD mice, we detected a downregulation of genes affecting the ion/neurotransmitter uptake and cell volume regulation, namely genes of glutamate transporters, α2ß2 subunit of Na+/K+-ATPase, connexin 30 or Kir4.1 channel. In conclusion, the aged hippocampus of 3xTg-AD mice displays an enlarged ECS volume fraction and an increased number of obstacles, which emerge earlier than in physiological aging. Both these changes may strongly affect intercellular communication and influence astrocyte ionic/neurotransmitter uptake, which becomes impaired during aging and this phenomenon is manifested earlier in 3xTg-AD mice. The increased incidence of astrocytes with limited ability to take up ions/neurotransmitters may further add to a cytotoxic environment.

18.
Cell Rep ; 31(11): 107777, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32553170

RESUMO

Ischemic stroke is a well-recognized disease of aging, yet it is unclear how the age-dependent vulnerability occurs and what are the underlying mechanisms. To address these issues, we perform a comprehensive RNA-seq analysis of aging, ischemic stroke, and their interaction in 3- and 18-month-old mice. We assess differential gene expression across injury status and age, estimate cell type proportion changes, assay the results against a range of transcriptional signatures from the literature, and perform unsupervised co-expression analysis, identifying modules of genes with varying response to injury. We uncover downregulation of axonal and synaptic maintenance genetic program, and increased activation of type I interferon (IFN-I) signaling following stroke in aged mice. Together, these results paint a picture of ischemic stroke as a complex age-related disease and provide insights into interaction of aging and stroke on cellular and molecular level.


Assuntos
Envelhecimento/fisiologia , Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , AVC Isquêmico/metabolismo , Traumatismo por Reperfusão/metabolismo , Animais , Isquemia Encefálica/genética , Modelos Animais de Doenças , Camundongos
19.
Cells ; 9(2)2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32093031

RESUMO

MiR-21 is being gradually more and more recognized as a molecule regulating bone tissue homeostasis. However, its function is not fully understood due to the dual role of miR-21 on bone-forming and bone-resorbing cells. In this study, we investigated the impact of miR-21 inhibition on pre-osteoblastic cells differentiation and paracrine signaling towards pre-osteoclasts using indirect co-culture model of mouse pre-osteoblast (MC3T3) and pre-osteoclast (4B12) cell lines. The inhibition of miR-21 in MC3T3 cells (MC3T3inh21) modulated expression of genes encoding osteogenic markers including collagen type I (Coll-1), osteocalcin (Ocl), osteopontin (Opn), and runt-related transcription factor 2 (Runx-2). Inhibition of miR-21 in osteogenic cultures of MC3T3 also inflected the synthesis of OPN protein which is essential for proper mineralization of extracellular matrix (ECM) and anchoring osteoclasts to the bones. Furthermore, it was shown that in osteoblasts miR-21 regulates expression of factors that are vital for survival of pre-osteoclast, such as receptor activator of nuclear factor κB ligand (RANKL). The pre-osteoclast cultured with MC3T3inh21 cells was characterized by lowered expression of several markers associated with osteoclasts' differentiation, foremost tartrate-resistant acid phosphatase (Trap) but also receptor activator of nuclear factor-κB ligand (Rank), cathepsin K (Ctsk), carbonic anhydrase II (CaII), and matrix metalloproteinase (Mmp-9). Collectively, our data indicate that the inhibition of miR-21 in MC3T3 cells impairs the differentiation and ECM mineralization as well as influences paracrine signaling leading to decreased viability of pre-osteoclasts.


Assuntos
MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese/genética , Comunicação Parácrina/genética , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Cocultura , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Matriz Extracelular/metabolismo , Camundongos , MicroRNAs/genética , Osteopontina/genética , Osteopontina/metabolismo , RNA Mensageiro/genética , Transdução de Sinais/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo , Transfecção
20.
Clin Chem ; 66(1): 217-228, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31699702

RESUMO

BACKGROUND: Recent advances allowing quantification of RNA from single cells are revolutionizing biology and medicine. Currently, almost all single-cell transcriptomic protocols rely on reverse transcription (RT). However, RT is recognized as a known source of variability, particularly with low amounts of RNA. Recently, several new reverse transcriptases (RTases) with the potential to decrease the loss of information have been developed, but knowledge of their performance is limited. METHODS: We compared the performance of 11 RTases in quantitative reverse transcription PCR (RT-qPCR) on single-cell and 100-cell bulk templates, using 2 priming strategies: a conventional mixture of random hexamers with oligo(dT)s and a reduced concentration of oligo(dT)s mimicking common single-cell RNA-sequencing protocols. Depending on their performance, 2 RTases were further tested in a high-throughput single-cell experiment. RESULTS: All tested RTases demonstrated high precision (R2 > 0.9445). The most pronounced differences were found in their ability to capture rare transcripts (0%-90% reaction positivity rate) and in their absolute reaction yield (7.3%-137.9%). RTase performance and reproducibility were compared with Z scores. The 2 best-performing enzymes were Maxima H- and SuperScript IV. The validity of the obtained results was confirmed in a follow-up single-cell model experiment. The better-performing enzyme (Maxima H-) increased the sensitivity of the single-cell experiment and improved resolution in the clustering analysis over the commonly used RTase (SuperScript II). CONCLUSIONS: Our comprehensive comparison of 11 RTases in low RNA input conditions identified 2 best-performing enzymes. Our results provide a point of reference for the improvement of current single-cell quantification protocols.


Assuntos
DNA Polimerase Dirigida por RNA/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Animais , Primers do DNA/metabolismo , Humanos , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reprodutibilidade dos Testes , Análise de Célula Única , Superóxido Dismutase-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...